Cross-validation of matching correlation analysis by resampling matching weights
نویسنده
چکیده
The strength of association between a pair of data vectors is represented by a nonnegative real number, called matching weight. For dimensionality reduction, we consider a linear transformation of data vectors, and define a matching error as the weighted sum of squared distances between transformed vectors with respect to the matching weights. Given data vectors and matching weights, the optimal linear transformation minimizing the matching error is solved by the spectral graph embedding of Yan et al. (2007). This method is a generalization of the canonical correlation analysis, and will be called as matching correlation analysis (MCA). In this paper, we consider a novel sampling scheme where the observed matching weights are randomly sampled from underlying true matching weights with small probability, whereas the data vectors are treated as constants. We then investigate a cross-validation by resampling the matching weights. Our asymptotic theory shows that the cross-validation, if rescaled properly, computes an unbiased estimate of the matching error with respect to the true matching weights. Existing ideas of cross-validation for resampling data vectors, instead of resampling matching weights, are not applicable here. MCA can be used for data vectors from multiple domains with different dimensions via an embarrassingly simple idea of coding the data vectors. This method will be called as cross-domain matching correlation analysis (CDMCA), and an interesting connection to the classical associative memory model of neural networks is also discussed.
منابع مشابه
Evaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملMatching of Polygon Objects by Optimizing Geometric Criteria
Despite the semantic criteria, geometric criteria have different performances on polygon feature matching in different vector datasets. By using these criteria for measuring the similarity of two polygons in all matchings, the same results would not have been obtained. To achieve the best matching results, the determination of optimal geometric criteria for each dataset is considered necessary....
متن کاملOptimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملWiener models of direction-dependent dynamic systems
Direction-dependent dynamic systems are defined, and Wiener models for them are described. For first-order systems with pseudo-random binary inputs, optimising the model parameters by cross-correlation function matching methods based on analysis gives excellent results. For first-order systems with inverse-repeat pseudo-random binary inputs, optimisation by discrete Fourier transform matching a...
متن کاملA New Structural Matching Method Based on Linear Features for High Resolution Satellite Images
Along with commercial accessibility of high resolution satellite images in recent decades, the issue of extracting accurate 3D spatial information in many fields became the centre of attention and applications related to photogrammetry and remote sensing has increased. To extract such information, the images should be geo-referenced. The procedure of georeferencing is done in four main steps...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 75 شماره
صفحات -
تاریخ انتشار 2016